VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. IV-Semester Main & Backlog Examinations, July-2022

Numerical Methods, Probability & Statistics

(Common to Civil, EEE & Mech.Engg.)

Time: 3 hours

Max. Marks: 60

Note:

1. Answer all questions from Part-A and any FIVE from Part-B

2. Provide normal, t, f and Chi-square tables

Q. No.	Stem of the question						M	L	CO	PO
1.	Give the Newton's forward interpolation formula? Can we use it for unequally spaced intervals?				2	1	1	1,12		
2.	Find the	Find the cubic polynomial from the following data				2	3	1	1,12	
	x 0	1	2	3						
	F(x) 1	2	1	10			V H			
3.	Write a Taylors formula to solve ordinary differential equations						2	1	2	1,12
4.	Write the formulae of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ by using Newton's Forward Interpolation formula.						2	2	2	1,12
5.	Explain the formula of probability density function of Continuous random variable.						2	2	3	1,12
6.	Write any two applications of normal distribution.					2	1	3	1,12	
7.	Define the T-test formula and when to use it?					2	1	4	1,12	
8.	Explain chi-square test and identify its limitations?					2	2	4	1,12	
9.	Define the Karl Pearson Correlation Coefficient.					2	1	5	1,12	
10.	Write the normal equations of a straight line.				2	2	5	1,12		
				Pa	$rt-B (5\times 8 = 40 M)$	(arks)	d a			
11. a)	Find the solution of $x = 1895$ using Newton's Forward Difference formula				4	2	1	1,2,12		
	x				f(x)	della villement per sorigi				
	1891			- Suddiside Carrier	46	ibons				
	1901	. 8		iy i	66	ada a a adonylog sabai	l bn			
	1911	and the street	da"		81	. aquatipa				
	1921				93	TO ALTER STOR				
	1931		-		101	F 0.1 2.0 1. 3				

b)	Find the		x = 301 using Lagrange's Interpolation	4	2	1	1,2,12
	x	f(x)	an Aligher over Leonalta Millerina				
	300	2.4771	nga Towar I Jan Sanatan				
	304	2.4829	M. gramus kanali — e ^l g amuly nia de la				
	305	2.4843	entre en				
	307	2.4871	The and the second of the second				
	-		ma messari i ne i ser m formula? Can un				
12. a)	Define	the Euler's me	thod for solving differential equations?	2	1	2	1,12
b)	Solve the following problems using Euler's method with step size of $h = 0.2$, Compute an approximate value of y at $x = 1$, $y' = x + y$, $y(0) = 0$.					2	1,2,12
13. a)	Most graduate schools of business require applicants for admission to take the Graduate Management Admission Council's GMAT examination. Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112. What is the probability of an individual scoring above 500 on the GMAT?					3	1,2,12
b)	function	n. Find K ,hence 0 1 2 3		5	3	3	1,2,12
14 0)	P(x)		k 9k 11k 13k	2	2	4	1 12
14. a)			in hypothesis testing.				1,12
b)	engine. than 5 l (The le gallon selects	He claims that hours (300 min rading brand law of gasoline.) a simple rand	loped a new, energy-efficient lawn mower that the engine will run continuously for more utes) on a single gallon of regular gasoline. When we engine runs for 300 minutes on 1 From his stock of engines, the inventor om sample of 50 engines for testing. The werage of 305 minutes. The true standard	6	3	4	1,2,12
	deviation times of that the	on σ is known of the engines	and is equal to 30 minutes, and the run are normally distributed. Test hypothesis ne is more than 300 minutes. Use a 0.05				
15. a)		second order plot of least square	polynomial to the following data by the es.	6	2	5	1,2,12
		x 0	2 3 4 5 6 0.5 1.0 1.5 2.0 2.5 0.25 1.0 2.25 4.0 6.25				
b)	Explain		re fitting techniques?	2	2	5	1,12

Code No.: 14143

Use Lagrange's formula, to find the quadratic polynomial that takes the values	4	2	1	1,2,12
x 0 1 3 f(x) 0 1 0				
Apply Runge-Kutta method of 4^{th} order to find an approximate value of y when $x = 0.2$ given that	4	2	2	1,2,12
$\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$ taking step size $h = 0.2$.				
Answer any <i>two</i> of the following:				
Define the different types of Discrete random variable? How to find their variances	4	1	3	1,2
The nine items of a sample have the following values 45, 47, 50,52,48,47,49,53,51. Does the mean of these differ significantly from the assumed mean of 47.5?	4	2	4	1,2,12
Find the Karl Pearson correlation coefficient from below data and draw the conclusions	4	3	5	1,2,12
3 40 5000				
4 50 7500				
))))))	takes the values $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	takes the values $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	takes the values $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	takes the values

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	37%
iii)	Blooms Taxonomy Level – 3 & 4	43%
